Expert forum

[文献精读] 游离DNA检测是肿瘤监控的临床首选技术

发布者:时间:2017-07-02

1.cfDNA技术成为液体活检的临床首选

       在本期我们重点谈谈 cfDNA(又称cell free DNA或游离DNA)技术的发展和应用。 液体活检技术在近年来取得了长足进步,成为癌症的诊断和监测的首选方案[1-6]。医生和科学家们已经发现,由肿瘤细胞释放到血液中的cfDNA,在分子和病理水平上,能够比较准确地反映肿瘤本身的基因型态及其变化[1-6] 相比液体活检领域的其他靶标,比如游离癌细胞,、游离RNA,、蛋白质和外泌体, cfDNA有着明显的优势,因为它获取更方便,结果更稳定,在临床上的使用也更为广泛。 所以在临床应用上,cfDNA是液体活检的首选技术。

       我们必须承认,游离癌细胞技术对液体活检的基础研究,起到了根本的推动作用[1-2,7-9]。在前面几期的液体活检通讯里,我们已经看到,正是因为对游离癌细胞的认知拓展了人们对肿瘤生物学的认知。 cfDNA作为实体瘤和游离癌细胞的基因代表,是临床应用上的首选,是医生和诊断工业共同认可的液体活检技术的代名词。



2. cfDNA液体活检覆盖各型癌症

       众所周知,癌症不是一种疾病,而是多种疾病的组合,根据组织和器官来源来看,癌症有100多种,根据分子病理学分类癌症则是上千种或更多[10-14] 常见和多发的癌症类型,在科研和临床方面,提供了很多病例和积累。 在这里我们看一下,哪些癌症类型可以用cfDNA技术来做诊断和监测。

       在西方国家,以美国为例,最多发的癌症为肺癌、乳腺癌、肠癌、前列腺癌和黑色素癌等[10-11] 到目前为止,针对cfDNA的液体活检技术,已经用于诊断和监测肺癌[15-18]、乳腺癌[19-21]、肠癌[22-23]、前列腺癌[24-25]和和黑色素癌[26-27]。至于发病率不高,但是致死率很高的癌症,比如胰腺癌,cfDNA的液体活检技术也有着有效的应用[28-29]。在中国的多发癌症,除了肺癌、乳腺癌、前列腺癌这些发病率已经和世界接轨的病种,还有具有中国特点的消化道相关的癌症,也是高发病种[13-14] cfDNA为主的液体活检,在胃癌[30-31]、肝癌[32-33]和食道癌[34-35]领域,也已经成为来诊断和监测的有效手段。可以说,只要是有临床研究的癌症类型,cfDNA技术就已经或将很快覆盖了。

3. 液体活检的模型系统

       当前的液体活检技术的模型是建立在肺癌的诊断和治疗系统上的, 这是由于肺癌这个病种有着成熟的科研、诊断、治疗和法规的路径[12,15,16,36-38]。液体活检的模型系统,是通过检测非小细胞肺癌患者血浆中的cfDNA来诊断EGFR突变型,从而指导肺癌的靶向治疗药物并监测药物的疗效。这个模型取得的成功,已经在衍射到其他的癌症病种领域。 

       肺癌有很高的发病率、死亡率,它的发病率在美国是第二位,在中国是第一位,死亡率在美国和中国都是第一位[10-14]  除了吸烟者,很多从未吸烟的人因为遗传和环境的因素也患有肺癌。 正因为如此,针对肺癌的研究有很强的积累,人们已经知道在肺癌患者中,有85-90%的病例是非小细胞肺癌,所以对非小细胞肺癌的研究有很大投入,对基因突变型也有较为清楚的认识。

       非小细胞肺癌的基因检测已经完全改变了它原来的分型和治疗方式。非小细胞肺癌不再被视为一个疾病,它是一类由不同分子亚型构成的异质性疾病。其结果是,针对性的应用分子靶向药物改善了无数患者的临床疗效[37-42]。在肺腺癌领域,EGFR基因突变和ALK基因重组意味着单纯化疗不再是首选治疗。液体活检目的仅仅是为了诊断, 而是要指导用药。肺癌患者如果在EGFR基因上有特定的突变(L858R,T790M),患者对靶向治疗的药物就会有很好的疗效。 常见的靶向治疗药物,包括tyrosine kinase inhibitor (TKI) 的第一代和新一代的药物。对非小细胞肺癌患者进行组织活检来测定 EGFR ALK 状态已经是一个重要的诊疗步骤。肺癌的分子机理和诊断的方向相对于清晰,治疗方案和伴随诊断的路径也较为成熟,对肺癌患者的基因型分析,是诊断和治疗的重要一步,在这一步已经被cfDNA的液体活检技术覆盖。

4. 癌症的液体活检获得法规的认可

       到目前为止,美国FDA批准的唯一的液体活检技术,是用罗氏公司的cobas EGFR突变测试v2[42-46]201661日,FDA批准cobas EGFR突变测试v2使用血浆标本作为检测外显子19删除或外显子21L858R)替代突变的伴随诊断测试表皮生长因子受体(EGFR)基因来鉴定适合用Tarceva®(厄洛替尼)治疗的转移性非小细胞肺癌患者。 在此之前,美国病理学会(CAP)的诊疗指南中,EGFR的突变测试还是传统的组织切片样本, 就是福尔马林固定石蜡包埋组织标本(FFPE)。 但是在cobas EGFR突变测试v2批准中,新用途是用于检测从血浆样品分离的cfDNA中的这些特定突变,以帮助医生鉴定可首先用TARCEVA(厄洛替尼)治疗的患者。这是FDA批准使用的第一个液体活检测试, 在法规角度上认可了EGFR和非小细胞肺癌系统在液态活检领域的模型和示范作用。

       值得关注的是FDA对样本来源的推荐,在针对cobas EGFR突变测试v2的批示里, FDA提出测试的首选方法是血浆标本的液体活检,筛查结果如果是阴性则用组织活检确认[42] 所以FDA的思路是用液体活检做一线的方法学,而传统的组织活检是二线方法学,用来做阴性样本的确认。迄今为止,针对血浆或血清的cfDNA检测技术已经得到了迅速的发展,其中以数字PCR技术[47-52]。和二代测序技术为代表[53-61]

5. 液体活检指导肿瘤监控、治疗和预后

       基于cfDNA的液体活检技术,在肿瘤的诊断和检测方面,能够准确地描述肿瘤负荷、肿瘤基因型, 以及肿瘤动态变化[62-71]。在最新的一个针对肠癌的报道中,癌症患者的血液cfDNA水平是14.23+/-6.33 ng/ml, 而健康人对照组的cfDNA水平是2.60+/-1.59 ng/ml, 差异非常显著[62] 多项研究表明,肿瘤的总负荷和血液cfDNA的水平是直接相关的, cfDNA的整体水平反应了肿瘤水平[62-66]

       根据临床上最近10年的观察,cfDNA能够体现肿瘤的动态变化,在手术和化疗阶段,肿瘤cfDNA的水平也随之下降[67-71] 在癌症的治疗过程中,药物的使用, 尤其是新型靶向药物的使用, 是以对癌症基因型的正确判断为前提, 而癌症基因型的检测, 越来越倾向用cfDNA技术为主的液体活检来完成[72-80] 在疗程之后的监控,cfDNA更是起到了不开替代的作用, 这里所说监控既包括了靶向药物的疗效监控,也包括对常规抗癌手段(比如化疗和放疗)的监控,而这个监控阶段要持续几年,活检要求持续取样, 传统的组织活检难以做到,液体活检的优势在这里充分发挥。 对cfDNA的液体活检,不仅涵盖对药物疗效的确认,也能够及时监测到癌症复发, 以及抗药性的产生[81-86]

6. 液体活检和组织活检的一致性

       根据现有的治疗指南, 组织活检仍然是癌症诊断的金标准, 而液体活检在科研和临床界的蓬勃兴起,让我们意识到液体活检是组织活检的最佳替代。 那么液体活检究竟在多大程度上反映了组织活检的结果,两者的一致性如何,这个话题伴随着液体活检技术的发展在逐步深化, 已经积累了多项研究成果[87-104]。根据对cfDNAEFGR分析,液体活检和组织活检相比,灵敏度、特异性、一致性(sensitivity, specificity and concordance)分别为65%95%80%, 这是综合了多家科研机构的上千例的数据的综合结论。 总体看, 液体活检的特异性很好,只要是它检出的阳性就很少是假阳性。 它的灵敏度随着不同方法学、不同的课题而不同,有着40%90%的巨大区间。值得一提的是,现在液体活检在癌症领域的主要临床应用,不是早期诊断,而是监控已有病人,这和灵敏度问题不无关系。提高灵敏度将是近期液体活检在今后在技术上的一大发展点,液体活检也势必在癌症诊疗领域发挥更大的作用。 

参考文献

1. Simon R et al. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013 May;12(5):358-69.

2. Siravegna G et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017 Mar 2. doi: 10.1038/nrclinonc.2017.14.

3. Heitzer E et al. Circulating Tumor DNA as a liquid Biopsy for cancer. Clinical Chemistry. 2015 61:1 112-123.

4.  Oellerich M et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017 May; 54(3):205-218.

5.  Wan JC et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017 Apr;17(4):223-238.

6.  Perakis S et al. Advances in Circulating Tumor DNA Analysis. Adv Clin Chem. 2017;80:73-153.

7.  Aceto N et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014 Aug 28;158(5):1110-22.

8 . Yu M et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014 Jul 11;345(6193):216-20.

9.  Cheung KJ et al. A collective route to metastasis: Seeding by tumor cell clusters. Science. 2016 Apr 8;352(6282):167-9.

10.AmericanCancer Society, 2017. http://www.cancer.org/research/cancer-facts-statistics.

11. Siegel R et al. Cancer statistics 2013. CA Cancer J Clin 2013;63:11-30.

12. Reck M et al. Metastatic nonsmall-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014 25:iii27-iii39.

13. Chen W et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32.

14. Chen W et al. Cancer incidence and mortality in China, 2013 Cancer Lett. 2017 May 3. pii: S0304-3835(17)30284-7.

15. Levy B  et al. ClinicalUtilityofLiquidDiagnosticPlatformsinNon-SmallCell LungCancer. The Oncologist 2016 21:1121-1130 .

16. Cargnin S  et al. Quantitative Analysis of Circulating Cell-Free DNA for Correlation with Lung Cancer Survival: A Systematic Review and Meta-Analysis.  J Thorac Oncol. 2017 Jan;12(1):43-53.

17. Vendrell JA et al. Circulating Cell Free Tumor DNA Detection as a Routine Tool forLung Cancer Patient Management. Int J Mol Sci. 2017 Jan 29;18(2).

18. Malapelle U et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res. 2016 .

19. Openshaw MR et al.  The role of ctDNA detection and the potential of the liquid biopsy for breast cancer monitoring. Expert Rev Mol Diagn. 2016 Jul;16(7):751-5.

20. Forte VA  et al. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med. 2016 Mar;13(1):19-40.

21. Lin Z et al. Value of circulating cell-free DNA analysis as a diagnostic tool for breast cancer: a meta-analysis. Oncotarget. 2017 Apr 18;8(16):26625-26636.

22. Spindler KG et al. Methodological, biological and clinical aspects of circulating free DNA in metastatic colorectal cancer. Acta Oncol. 2017 Jan;56(1):7-16.

23. Zarour LR et al. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol. 2017 Jan 20;3(2):163-173.

24. Hegemann M et al. Liquid biopsy: ready to guide therapy in advanced prostate cancer? BJU Int. 2016 Dec;118(6):855-863.

25. Goldstein A et al. Detection fidelity of AR mutations in plasma derived cell-free DNA. Oncotarget. 2017 Feb 28;8(9):15651-15662.

26. Molina-Vila MA et al. cfDNA analysis from blood in melanoma. Ann Transl Med. 2015 Nov;3(20):309.

27. Schreuer M et al. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors. J Transl Med. 2016 Apr 19;14:95.

28. Takai E et al. Clinical Utility of Circulating Tumor DNA for Molecular Assessment and Precision Medicine in Pancreatic Cancer. Adv Exp Med Biol. 2016;924:13-17.

29. Hadano N et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016 Jun 28;115(1):59-65.

30. Beeharry MK et al. New blood markers detection technology: A leap in the diagnosis of gastric cancer. World J Gastroenterol. 2016 Jan 21;22(3):1202-12.

31. De Mattos-Arruda L et al. Prognostic and predictive roles for circulating biomarkers in gastrointestinal cancer. Future Oncol. 2011 Dec;7(12):1385-97.

32. Zhou J et al. Liquid Biopsy and its Potential for Management of Hepatocellular Carcinoma. J Gastrointest Cancer. 2016 Jun;47(2):157-67.

33. Liao W et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing. Oncotarget. 2016 Jun 28;7(26):40481-40490.

34. Hsieh CC et al. Circulating Cell-Free DNA Levels Could Predict Oncological Outcomes of Patients Undergoing Esophagectomy for Esophageal Squamous Cell Carcinoma. Int J Mol Sci. 2016 Dec 17;17(12).

35. Ueda M et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence. Oncotarget. 2016 Sep 20;7(38):62280-62291.

36. Sorber L et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017 May;107:100-107.

37. Batson S et al. Tyrosine kinase inhibitor combination therapy in first-line treatment of non-small-cell lung cancer: systematic review and network meta-analysis. Onco Targets Ther. 2017 May 5;10:2473-2482.

38. Shim HS et al. Molecular Testing of Lung Cancers. J Pathol Transl Med. 2017 May;51(3):242-254.

39. Roviello G et al. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer? Clin Exp Med. 2017 Apr 8. doi: 10.1007/s10238-017-0460-7.

40. Ruiz-Ceja KA et al. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother. 2017 Jun;90:24-37.

41. Greenhalgh J et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Biomed Pharmacother. 2017 Jun;90:24-37.

42. FDA et al. cobas EGFR Mutation Test v2. 2016. Available online.  www.fda.gov/Drugs/InformationOnDrugs/ ApprovedDrugs/ucm504540.htm .

43. Neal I et al. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors. Arch Pathol Lab Med—Vol 137: 828. 2013.

44. FDA et al. cobas® EGFR Mutation Test–P120019. Available online:  http://www.fda.gov/ MedicalDevices/ProductsandMedicalProcedures.

45 Kwapisz D et al. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017 Feb;5(3):46.

46. Malapelle U et al. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn. 2017 Mar;17(3):209-215.

47. Suzawa K et al. Optimal method for quantitative detection of plasma EGFR T790M mutation using droplet digital PCR system. Oncol Rep. 2017 May;37(5):3100-3106.

48. Watanabe K et al. EGFR Mutation Analysis of Circulating Tumor DNA Using an Improved PNA-LNA PCR Clamp Method. Can Respir J. 2016; 2016: 5297329.

49. Wang J et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem. 2010 Apr;56(4):623-32.

50. Miyamae Y et al. Mutation detection of epidermal growth factor receptor and KRAS genes using the smart amplification process version 2 from formalin-fixed, paraffin-embedded lung cancer tissue. J Mol Diagn. 2010 Mar;12(2):257-64.

51. Fukui T et al. Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with non-small cell lung cancer. Clin Cancer Res. 2008 Aug 1;14(15):4751-7.

52. Ishii H et al. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples. Oncotarget. 2015 Oct 13;6(31):30850-8.

53. Borràs E et al. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing. BMC Cancer. 2011 Sep 24;11:406.

54. Weerts MJA et al. Somatic Tumor Mutations Detected by Targeted Next Generation Sequencing in Minute Amounts of Serum-Derived Cell-Free DNA. Sci Rep. 2017 May 18;7(1):2136.

55. Falk AT et al. NGS analysis on tumor tissue and cfDNA for genotype-directed therapy in metastatic NSCLC patients. Between hope and hype. Expert Rev Anticancer Ther. 2017 May 22:1-5.

56 Mehrotra M et al. Study of Preanalytic and Analytic Variables for Clinical Next-Generation Sequencing of Circulating Cell-Free Nucleic Acid. J Mol Diagn. 2017 May 12. pii: S1525-1578(17)30027-2.

57. Albitar A et al. Using high-sensitivity sequencing for the detection of mutations in BTK and PLCγ2 genes in cellular and cell-free DNA and correlation with progression in patients treated with BTK inhibitors. Oncotarget. 2017 Mar 14;8(11):17936-17944.

58. Goldstein A et al. Detection fidelity of AR mutations in plasma derived cell-free DNA. Oncotarget. 2017 Feb 28;8(9):15651-15662.

59. Nair N et al. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study. PLoS Med. 2016 Dec 27;13(12):e1002206.

60. Long Y et al. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients. Arch Med Res. 2016 Jul;47(5):365-371.

61. Forshew T et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012 May 30;4(136).

62. Berger AW et al. Treatment monitoring in metastatic colorectal cancer patients by quantification and KRAS genotyping of circulating cell-free DNA. PLoS One. 2017 Mar 22;12(3):e0174308.

63. Thierry AR et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 2010 Oct;38(18):6159-75.

64. Mouliere F et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One. 2011;6(9):e23418.

65. Gorges TM et al. Cancer therapy monitoring in xenografts by quantitative analysis of circulating tumor DNA. Biomarkers. 2012 Sep;17(6):498-506.

66. Shaw JA et al. Mutation Analysis of Cell-Free DNA and Single Circulating Tumor Cells in Metastatic Breast Cancer Patients with High Circulating Tumor Cell Counts. Clin Cancer Res. 2017 Jan 1;23(1):88-96.

67. Diehl F et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008 Sep;14(9):985-90.

68. Bettegowda C et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):.

69. Spindler KG et al. Methodological, biological and clinical aspects of circulating free DNA in metastatic colorectal cancer. Acta Oncol. 2017 Jan;56(1):7-16.

70. Tabernero J et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015 Aug;16(8):937-48.

71. Wang J et al. Analyzing epidermal growth factor receptor mutation status changes in advanced non-small-cell lung cancer at different sampling time-points of blood within one day. Thorac Cancer. 2017 Apr 24. doi: 10.1111/1759-7714.

72. Kimura H et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer 2007;97: 778–784.

73. Kimura H et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res. 2006 Jul 1;12(13):3915-21.

74. Lazarus DR et al. How and when to use genetic markers for nonsmall cell lung cancer. Curr Opin Pulm Med. 2013 Jul;19(4):331-9.

75. Kani K et al. Investigation of acquired resistance to EGFR-targeted therapies in lung cancer using cDNA microarrays. Methods Mol Biol. 2012;795:233-53.

76. Keedy VL et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011 May 20;29(15):2121-7.

77. Gandhi J et al. Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One. 2009;4(2):e4576.

78. Weiss GJ et al. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy. Clin Cancer Res. 2017 Mar 20. pii: clincanres.0231.2017.

79. Iwama E et al. Monitoring of somatic mutations in circulating cell-free DNA by digital PCR and next-generation sequencing during afatinib treatment in patients with lung adenocarcinoma positive for EGFR activating mutations. Ann Oncol. 2017 Jan 1;28(1):136-141.

80. Jansen MP et al. Cell-free DNA mutations as biomarkers in breast cancer patients receiving tamoxifen. Oncotarget. 2016 Jul 12;7(28):43412-43418.

81. Frattini M et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008 May 18;263(2):170-81.

82. Shaw AT et al. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013 Mar 10;31(8):1105-11.

83. Tie J et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016 Jul 6;8(346):.

84. Tie J et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015 Aug;26(8):1715-22.

85. Tabernero J et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015 Aug;16(8):937-48.

86. Murtaza M et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013 May 2;497(7447):108-12.

87. Mao C et al.  Blood as a substitute for tumor tissue in detecting EGFR mutations for guiding EGFR TKIs treatment of nonsmallcelllungcancer:Asystematicreviewand meta-analysis. Medicine (Baltimore) 2015;94: e775.

88. Douillard JY et al. Gefitinib treatment in EGFR mutated Caucasian NSCLC: Circulating-free tumor DNA as a surrogate for determination of EGFR status.  J Thorac Oncol 2014;9:1345–1353.

89. Luo J et al. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: A systematic review and meta-analysis.  Sci Rep 2014;4:6269.

90. Goto K et al. Epidermal growth factor receptor mutation status in circulating free DNA in serum: from IPASS, a phase III study of gefitinib or carboplatin/paclitaxel in non-small cell lung cancer. J Thorac Oncol. 2012 Jan;7(1):115-21.

91. Liu X et al. The diagnostic accuracy of pleural effusion and plasma samples versus tumour tissue for detection of EGFR mutation in patients with advanced non-small cell lung cancer: comparison of methodologies. J Clin Pathol. 2013 Dec;66(12):1065-9.

92. Kuang Y et al. Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res. 2009 Apr 15;15(8):2630-6.

93. Brevet M et al. Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors. Lung Cancer. 2011 Jul; 73(1): 96–102.

94. Weber B et al. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer. 2014; 14: 294.

95. Chae YK et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016 Oct 4; 7(40): 65364–65373.

96. Karlovich C et al. Assessment of EGFR Mutation Status in Matched Plasma and Tumor Tissue of NSCLC Patients from a Phase I Study of Rociletinib (CO-1686).  Clin Cancer Res. 2016 May 15;22(10):2386-95.

97. Bennett CW et al. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget. 2016 Oct 25; 7(43): 71013–71035.

98. Ohira T et al. Tumor volume determines the feasibility of cell-free DNA sequencing for mutation detection in non-small cell lung cancer. Cancer Sci. 2016 Nov;107(11):1660-1666.

99. Oxnard GR et al. Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2016 Oct 1;34(28):3375-82.

100. Yanagita M et al. A Prospective Evaluation of Circulating Tumor Cells and Cell-Free DNA in EGFR-Mutant Non-Small Cell Lung Cancer Patients Treated with Erlotinib on a Phase II Trial. Clin Cancer Res. 2016 Dec 15;22(24):6010-6020.

101. Bai H et al. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol. 2009 Jun 1;27(16):2653-9.

102. Malapelle U et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 2017 Mar 14;116(6):802-810.

103. Beije N et al. Somatic mutation detection using various targeted detection assays in paired samples of circulating tumor DNA, primary tumor and metastases from patients undergoing resection of colorectal liver metastases. Mol Oncol. 2016 Oct 10. pii: S1574-7891(16)30110-7.

104. Pishvaian MJ et al. A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative. Oncotarget. 2016 Nov 8. doi: 10.18632/oncotarget.13225.